13 Января 2009
Алсу Файзуллина

Алсу Файзуллина

Руководитель пресс-службы

8 (800) 100-30-30 (доб.144)

press@ledel.ru

Что такое LED?

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь тема про светодиодные светильники у всех на слуху. Говорят, за ними будущее. Но, может статься, ожидания преувеличены? Узнать бы поточнее!

 

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?
Светодиод — это полупроводниковый прибор, преобра­зующий электрический ток непосредственно в световое излучение.
Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?
Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современ­ные светодиоды мало похожи на первые корпусные свето-диоды, применявшиеся для индикации. Конструкция мощного светодиода серии Luxeon, выпускаемой компа­нией Lumileds, схематически изображена на рисунке.

Конструкция светодиода Luxeon фирмы Lumileds lighting

3. Как работает светодиод?
Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего ну­жен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтакт-ные слои полупроводникового кристалла легируют раз­ными примесями: по одну сторону акцепторными, по другую — донорскими.
Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной обла­сти светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излу­чения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кри­сталл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.
Реально, чтобы соблюсти оба условия, одного р-п-пе-рехода в кристалле оказывается недостаточно, и прихо­дится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изуче­ние которых российский физик академик Жорес Алфе­ров получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?
Разумеется, да. Ведь чем больше ток, тем больше элект­ронов и дырок поступают в зону рекомбинации в едини­цу времени. Но ток нельзя увеличивать до бесконечно­сти. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?
В светодиоде, в отличие от лампы накаливания или люми­несцентной лампы, электрический ток преобразуется не­посредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светоди­од (при должном теплоотводе) мало нагревается, что дела­ет его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист,что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически про­чен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 — 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низко­вольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?
Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галоген­ной лампой. Но специалисты утверждают, что в ближай­шие 2 — 3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?
Первоначально светодиоды применялись исключитель­но для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение све­тового потока к потребляемой энергии.
В 60-х и 70-х годах были созданы светодиоды на осно­ве фосфида и арсенида галлия, излучающие в желто-зе­леной, желтой и красной областях спектра. Их применя­ли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различ­ных системах визуализации информации. По светоотда­че светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало све-тодиодов синего, сине-зеленого и белого цвета.
К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство со­ставляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?
Исключительно от ширины запрещенной зоны, в кото­рой рекомбинируют электроны и дырки, то есть от мате­риала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?
Голубые светодиоды можно сделать на основе полу­проводников с большой шириной запрещенной зо­ны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)
У светодиодов на основе SiC оказался слишком мал кпд и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегре­вались из-за большого сопротивления и служили недол­го. Оставалась надежда на нитриды.
Нитрид галлия GaN плавится при 2000 °С, при этом рав­новесное давление паров азота составляет 40 атмосфер; яс­но, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полу­проводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от со­става, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но... проб­лему не удавалось решить до конца 80-х годов.
Первым, еще в 70-х, голубой светодиод на основе пле­нок нитрида галлия на сапфировой подложке удалось по­лучить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош...» — и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ об­наружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и да­же запатентовала устройство оптической памяти. Но то­гда загадочное явление объяснить не удалось.
Это сделали японцы — профессор И. Акасаки и док­тор X. Амано из университета Нагоя. Обработав плен­ку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирую-щий слой р-типа с высокой концентрацией дырок. Од­нако разработчики светодиодов не обратили должного внимания на их публикации.
Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами про­фессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное скани­рование, что смог получить эффективно инжектирую­щие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.
Фирма Nichia запатентовала ключевые этапы техно­логии и к концу 1997 года выпускала уже 10 — 20 млн го­лубых и зеленых светодиодов в месяц, а в январе 1998 го­да приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?
Квантовый выход — это число излученных квантов све­та на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый вы­ход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по до-роге» — поглощаться, рассеиваться). Внутренний кван­товый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего кван­тового выхода для красных светодиодов составляет 55%, а ддя синих — 35%.
Внешний квантовый выход — одна из основных ха­рактеристик эффективности светодиода.

Красный+зеленыйН-голубой СД

Голубой СД+ желтый люминофор

Голубой СД+зеленый и красный люминофор

УФСД+ RGB-люминофор

 470   525   590  630 (NM)
         470    525   590  630 (NM)
   410     470    525  590 630 (NM)
   410     470  525  590  630 (NM)

11. Как получить белый свет
с использованием светодиодов?
Существует три способа получения белого света от све­тодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, напри­мер линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светоди­ода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, со­ответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И на­конец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой свето-диод, так что два или три излучения смешиваются, об­разуя белый или близкий к белому свет.

12. Какой из трех способов лучше?
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только полу­чить белый цвет, но и перемещаться по цветовой диа­грамме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или по­средством программы, можно также получать различ­ные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матри­це обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномер­ного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответствен­но, по-разному изменяется их цвет в процессе старе­ния — суммарные цветовая температура и цвет «плы­вут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.
Белые светодиоды с люминофорами существенно деше­вле, чем светодиодные RGB-матрицы (в пересчете на еди­ницу светового потока), и позволяют получить хороший бе­лый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофо-ра в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже ста­реет, причем быстрее, чем сам светодиод.
Промышленность выпускает как светодиоды с люми­нофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?
Светодиод — низковольтный прибор. Обычный свето­диод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Свето­диод, который используется для освещения, потребля­ет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле от­дельные светодиоды могут быть включены последова­тельно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напря­жение пробоя указывается изготовителем и обычно со­ставляет более 5 В для одного светодиода.
Яркость светодиода характеризуется световым пото­ком и осевой силой света, а также диаграммой направ­ленности. Существующие светодиоды разных конструк­ций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цве­товой температурой, а также длиной волны излучения.
Для сравнения эффективности светодиодов между собой и с другими источниками света используется све­тоотдача: величина светового потока на один ватт элект­рической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?
Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.
Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?
Как видно из рисунка, в рабочих режимах ток экспонен­циально зависит от напряжения и незначительные изме­нения напряжения приводят к большим изменениям тока.Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэ­тому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

16. Для чего светодиоду требуется конвертор?
Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стаби­лизирует ток, протекающий через светодиод.


17. Можно ли регулировать яркость светодиода?
Яркость светодиодов очень хорошо поддается регули­рованию, но не за счет снижения напряжения пита­ния — этого-то как раз делать нельзя, — а так называе­мым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляю­щий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером упра­вления цветом RGB-матрицы). Метод ШИМ заключа­ется в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сиг­нала должна составлять сотни или тысячи герц, а ши­рина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет.
Небольшое изменение цветовой температуры свето­диода при диммировании несравнимо с аналогичным смещением для ламп накаливания.


18. Чем определяется срок службы светодиода?
Считается, что светодиоды исключительно долговеч­ны. Но это не совсем так. Чем больший ток пропуска­ется через светодиод в процессе его службы, тем вы­ше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодио­дов короче, чем у маломощных сигнальных, и состав-ляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, све­тодиод надо менять.


19. «Портится» ли цвет светодиода с течением времени?
Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее вре­мя нет стандартов, которые позволили бы выразить ко­личественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.


20. Не вреден ли светодиод для человеческого глаза?
Спектр излучения светодиода близок к монохроматиче­скому, в чем его кардинальное отличие от спектра солн­ца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не прово­дилось. Какие-либо данные о вредном воздействии све­тодиодов на человеческий глаз отсутствуют.
Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинте­ресовался академик Михаил Аркадьевич Остров­ский — крупный специалист в области цветного зре­ния. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного ос­вещения системой зрения человека».


21. Когда и как сверхъяркие светодиоды появились в России?
Об этом лучше всех расскажет профессор Юнович.
— Люминесценцию карбида кремния впервые на­блюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая науч­ная статья о кристаллах нитрида галлия была опубли­кована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсе-нида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно соз­дать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских По­литехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не при­вели к созданию эффективных голубых светодиодов.
В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти день­ги я смог поехать на конференцию в США, и там профес­сор Жак Панков познакомил меня с Ш. Накамурой. Я за­бросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям вобласти голубых светодиодов и рассказать им о столь за­мечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом ока­залось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследо­вали, сняли все характеристики и получили новые науч­ные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.
Одновременно специалисты из группы Бориса Фера-понтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и по­лучили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофо­ра, но у них не было хороших зеленых светодиодов. Све­тофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и москов­ское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!
Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консер­ватории, ученица моей жены, которая работала в Япо­нии первым концертмейстером симфонического оркест­ра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и при­слать на мой адрес 200 зеленых светодиодов. Из них бы­ли изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массо­вымприменением светодиодных светофоров.
Наши ученые и инженеры в НИИ «Сапфир» пыта­лись повторить достижение японцев и изготовитьструк­туры на основе нитридов для голубых и зеленых свето­диодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высо­ких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?
Что касается выращивания кристаллов, то основная тех­нология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращивае­мых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцеп­торами, чтобы создать p-n-переход с большой концентра­цией электронов в n-области и дырок — в р-области.



За один процесс, который длится несколько часов, мож­но вырастить структуры на 6 — 12 подложках диаметром50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стои­мость установок для эпитаксиального роста полупроводни­ковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долла­ров. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необ­ходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры.
Важным этапом технологии является планарная об­работка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для кон­тактных выводов. Пленку, выращенную на одной под­ложке, можно разрезать на несколько тысяч чипов раз­мерами от 0,24x0,24 до 1x1 мм2.
Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в кор­пусе, сделать контактные выводы, изготовить оптиче­ские покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый свето-диод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нуж­ный телесный угол. Около половины стоимости светоди-ода определяется этими этапами высокой технологии.
Необходимость повышения мощности для увеличе­ния светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной тех­нологии и несколько более совершенной SMD-техноло-гии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по техноло­гии СОВ, схематически изображен на рисунке.
Светодиоды, выполненные по SMD- и СОВ-техноло-гии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиа­тора — в этом случае она делается из металла. Так созда­ются светодиодные модули, которые могут иметь линей­ную, прямоугольную или круглую форму, бытьжесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных гало­генных, призванные им на замену. А для мощных све­тильников и прожекторов изготавливаются светодиод­ные сборки на круглом массивном радиаторе.
Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая систе­ма, направляющая световой поток в нужный телесный угол, играет все большую роль.

 23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количест­ве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие све­тодиоды для светотехники по полному циклу, начиная с про­изводства чипов и заканчиваяразличными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с произ­водителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, до­черней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductorsкомпании Osram Sylvania, специализирующемуся на устройствах LED, произ­водители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.
Впрочем, существуют компании, специализирующи­еся только на производстве чипов. Это предприятия ра­диоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Chemical.
Итак, перечислим основных производителей.
Чипы и отдельные светодиоды производят компании Сгее (www.cree.com), LumiLeds Lighting (www.lumileds.com), Nichia Corporation (www.nichia.com), Opto Technology (www.optotech.com), Osram Opto Semiconductors (www.osram-os.com), GEL Core (www.gelcore.com).Массо­вое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.
В России светодиоды производят компании «Корвет Лайт» (www.corvette-lights.ru), «Светлана Оптоэлектро-ника» (www.svetlana-o.spb.ru), «Оптэл», «Оптоника» (www.optonica.ru). По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным,специалисты перечисленных компаний имеют соответ­ствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — напри­мер, эпитаксиальная установка имеется в Санкт-Петер­бургском физтехе, — но для промышленного производ­ства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Светодиоды и светодиодные модули на основе чипов собственного или чужого производства выпускают ком­пании Lumileds Lighting, OsramOpto Semiconductors, GEL Core, Vossloh-Schwabe (www.vossloh-schwabe.comwww.vs-optoelectronic.com), Color Kinetics(www.colorkinetics.com), Tridonic Atco (www.tridonic.com) и др. В этой статье приводятся мо­дельные ряды светодиодных модулей компанийOsram Opto Semiconductors, Vossloh-Schwabe и LumiLeds Lighting, представленные на российском рынке.

Алексей Рябов